
«Moin»

an event-driven microservice application server,

written in Node.js

Torben Hartmann

Abstract

«In computing, microservices are small, independent processes that communicate with
each other to form complex applications which utilize language-agnostic APIs.»(Fowler
2014) The goal of this thesis is to implement and document a microservice application
server, written in Node.JS. The resulting software will be advertised and published on
the online platform GitHub as well as on the Node.JS package repository NPM.

i

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 The Name “Moin” . 1
1.3 Objective . 2
1.4 Structure of the Thesis . 3

2 Technical Background 5
2.1 Node.js . 5
2.2 Yeoman Generator . 5
2.3 Node Package Manager (NPM) . 5
2.4 Event-Driven Architecture . 7
2.5 Hot Swapping . 10
2.6 ECMA Script 6 . 11
2.7 Promises . 17
2.8 Microservices . 18

3 Architecture & Implementation 21
3.1 Application Structure . 21

3.1.1 Utilizing the package.json file . 21
3.1.2 Settings . 22
3.1.3 Moin command . 23
3.1.4 Modules . 23
3.1.5 Services . 23

3.2 Core . 23
3.2.1 PromiseEventEmitter . 25
3.2.2 API extension . 25
3.2.3 Events . 28

vii

Contents

3.2.4 Settings . 28
3.3 Modules . 29

3.3.1 Logo . 29
3.3.2 Service Loader . 29
3.3.3 Event System . 36
3.3.4 Filesystem Watcher . 45
3.3.5 Configuration . 46
3.3.6 Remote Event Dispatcher . 46

3.4 Services . 50
3.4.1 API . 50
3.4.2 Example . 52

4 Advertising & Publishing 57
4.1 Yeoman-Generator . 57
4.2 NPM . 58
4.3 GitHub & GitHub-Pages . 58

5 Conclusions 61
5.1 Problems . 61
5.2 Planned Features . 61

Appendix 63
List of Tables . 63
List of Figures . 63
References . 64
Code Listings . 65

viii

1 Introduction

1.1 Motivation

While developing a framework, some of the desired concepts to follow are a high modu-
larity and an easy and “comfortable” interface for the end-user. Because of the low re-
strictions on coding style the programming language Javascript is well suited to achieve
this goal. It allows loading code on-the-fly and offers a way to structure data in ob-
jects which are not based on a static model. Furthermore can be run on almost any
device (Browser, Server1, Desktop2, Mobile3 and even on Microcontrollers4). One of
the limitations which slow down the development process is, that despite the language
can load code dynamically, it has no functionality to unload or reload the code without
restarting the application. Without this limitation and with a few other enhancements
to the runtime environment, javascript could be a good choice for writing Microservices.
“Moin” is an attempt to create such an environment.

1.2 The Name “Moin”

Moin is a German greeting meaning “hello” and in some places “goodbye”.

One aim of the thesis is to create a framework which is published on the Node Package
Manager(NPM). A so called package on NPM has to have a unique name which is used
to install the package from the command line.

With over 200,000 packages the chances, that another project has already taken the
desired name is quit high. The following names could not be used, because they were

1with Node.js https://nodejs.org/en/
2with Electron http://electron.atom.io/

3with Ionic http://ionicframework.com/

4with Espruino http://www.espruino.com/

1

https://nodejs.org/en/
http://electron.atom.io/
http://ionicframework.com/
http://www.espruino.com/

Chapter 1. Introduction

already registered:

• “service” or “microservice” (because of the Microservice architecture the project is
based on)

• “events” (because of the extended EventEmitter)

• “say”, “shout” or “whisper” (as a metaphor for the communication between the
services)

Since it was nearly impossible to find a name which is bound to the functionality of
the project, the german word “Moin” was chosen, as it is easy to write for the english
speaking community.

1.3 Objective

The Objective of this work is to create an application which:

• Is modular in a way that every functionality can be extended.

• Has an asynchronous event-system which has a good performance and the ability
to filter events by more than just a name.

• Implements a Microservice architecture where the services can utilize the NPM
repository in order to be installed with the NPM command line tools.

• Has the ability to reload the services “on the fly” without restarting the whole
application.

• Should trigger the reloading, when the javascript file is changed, easing the way
the developer can work with the system.

The resulting software will be published on the NPM Repository and Github.com.
Furthermore, a simple website for the documentation will be created to serve as an API
documentation.

2

1.4 Structure of the Thesis

1.4 Structure of the Thesis

Technical Background In this chapter some of the terms used in this thesis are being
explained.

Architecture and Implementation In this chapter the architecture, design decisions
and the considerations made in the process are shown.

Advertising & Publishing In this chapter the process of publishing and the generation
of an online documentation is being presented.

Conclusion In the last chapter the project is reviewed and possible future development
is considered.

Methods and Events

Methods and events are documented in the following format:
Method: methodName(Type arg1= defaultValue, Type arg2)

parameters Type arg1 = defaultValue an argument

Type arg2 another argument

return value returnType

description description of the method

Event: eventName)(Type arg1)

parameters Type arg1 an argument

description description of the event

3

2 Technical Background

2.1 Node.js

Node.js is a runtime environment for writing server-side javascript applications. It en-
forces an event driven architecture with asynchronous I/O. This allows the process to be
non-blocking while waiting for an I/O operation to finish. The javascript code is being
interpreted by Google’s V8 Engine1.

2.2 Yeoman Generator

The yeoman generator 2 is a framework which simplifies the process of creating wizards.
These so called generators can create static files and directories, download content from
the web or generate files out of information, which they asked the user for. Until now,
over 4,000 generators3 exist for any kind of project. Despite the fact, that the generators
are written on the Node.js platform, they do not have to generate code for Javascript
projects. There are also generators which setup a whole PHP Blog-system4.

2.3 Node Package Manager (NPM)

Figure 2.1: The NPM
Logo

The Node Package Manager (or in short just NPM), is a pack-
age repository and management tool for Node.js. The tool is
distributed alongside the Node.js package. It offers a command
line app, which lets you download and publish packages on the

1
https://developers.google.com/v8/

2
http://yeoman.io/

3
http://yeoman.io/generators/

4
https://github.com/wesleytodd/YeoPress

5

https://developers.google.com/v8/
http://yeoman.io/
http://yeoman.io/generators/
https://github.com/wesleytodd/YeoPress

Chapter 2. Technical Background

online platform http://npmjs.com. Considering the easy in-
stallation of packages and the amount of over 320.000 published
packages5, one can say that NPM has a huge influence on the
popularity of Node.js.

2012 2013 2014 2015 2016
10000

50000

100000

200000

300000

year

nu
m

be
r

of
pa

ck
ag

es

Figure 2.2: Number of NPM packages over time

package.json

In order to turn ones script into a valid package, it is necessary to create a package.json6

file.

5
https://www.npmjs.com/) “total packages”

6
https://docs.npmjs.com/files/package.json

6

http://npmjs.com
https://www.npmjs.com/
https://docs.npmjs.com/files/package.json

2.4 Event-Driven Architecture

property description

name The name of the package. Must be lowercase and can only contain
URL-save7 characters

version The version of the package. This is important in order to publish
updated versions of the package. The version has to be given in the
Semantic Versioning8 format.

description A short description which gets displayed right below the name and in
the search results on npmjs.com

license Defines the license9 under which the package is distributed.

bin Is used to link a script as a global command. The property has to be
an object, where the key is the name of the command to be registered
and the value the relative path to the Javascript file.

dependencies An object that defines which packages the package depends on (in-
cluding their version). They get automatically installed when the npm
install command is executed at the root of the package.

author The author of the package

Table 2.1: The most important properties of a package.json file

It is possible to extend the contents of the package.json file with custom properties.

2.4 Event-Driven Architecture

An Event Driven Architecture is a pattern, which handles the generation and reaction of
so called events. An event is a “significant change in state”(Chandy 2006). The common
event most UI programmers have encountered is a click on a button. When clicking it,
the button’s state changes from not_clicked to clicked. Event Handlers which registered
for the click event will be notified and can react to the event.

7Only alphanumerics [0-9a-zA-Z], the special characters $-_.+!*´(), and reserved characters used for
their reserved purposes may be used unencoded within a URL.(T. Berners-Lee 1994)

8
http://semver.org/

9
https://spdx.org/licenses/

7

npmjs.com
http://semver.org/
https://spdx.org/licenses/

Chapter 2. Technical Background

Event Emitter Produces or emits an event notification. It has no knowledge if a con-
sumer exists or has received the notification.

Event Consumer Listens to or consumes an event.

Event Channel Sends the event notifications, which were emitted by the Event Emitter
to the previously registered Event Consumers.

Channel

ConsumerConsumer Consumer

Emitter

Figure 2.3: A simple event system

An event driven architecture encourages loose coupling of the components of the ap-
plication. The emitter or producer of an event typically does not know wether there
is a listener or consumer, which has registered for the specific event. In most cases,
when a response is required by the emitter, the handler itself emits an event, which gets
consumed by the original emitter. E.g. A emits an event. B consumes it and emits an
event as a response, which gets consumed by A.

8

2.4 Event-Driven Architecture

Channel

ConsumerConsumer

Emitter/ConsumerA

Consumer/EmitterB

Figure 2.4: Responses in event driven systems

Implementation in Node.js

As of the asynchronous concept of Node.js, it makes heavy use of events. A basic form
of an event emitter is part of the core modules. It is often used in network related or
child_process modules in Node.

The EventEmitter:

• Runs events synchronously. The emit call is finished, after every handler has run.

• Runs events in the order they have been added. Multiple emits lead to the same
outcome.

• Distinguishes events from one another by an event name. Examples for common
event names are “connect”, “data” or “error”.

9

Chapter 2. Technical Background

1 const EventEmitter = require("events");

2 class TestEmitter extends EventEmitter {}

3

4 const testEmitter = new TestEmitter();

5 testEmitter.on("event", (A, B) => {

6 console.log("an event occurred!");

7 console.log("A:", A, "B:", B);

8 });

9 testEmitter.emit("event", 1, 2);

Code Listing 2.1: A simple example of the node event emitter

2.5 Hot Swapping

“Hot Swapping” is a term which stands for replacing a computer component without
shutting down the system. The most known technology which includes “Hot Swapping”
is USB. In the field of software development it describes the ability to change program
code, without the need to restart the program.

When a system supports “Hot Swapping”, it makes it possible to reload one part of
the application, without interfering other parts. For example: Imagine a system with
two components where the first one receives E-Mails and the second serves webpages.
The Web-component can be reloaded independently without interfering the receival of
E-Mails.

10

2.6 ECMA Script 6

2.6 ECMA Script 6

ECMA Script 6 is the latest implemented standard of the Javascript programming lan-
guage. It adds a few syntactic enhancements to the language which are also used in the
code base of Moin.

Block Scoped Variables

The keyword let creates a new variable (like the keyword var) which is only accessible
in the current block and its child-blocks.

1 //"Old" style

2 var tmp = "123";

3 if (true) {

4 var tmp = "567";

5 }

6 console.log(tmp); //567

7 //----------No double declaration

8 let tmp = "123";

9 if (true) {

10 let tmp = "567"; //ERROR tmp allready declared

11 }

12 //----------block-scoped

13 if (true) {

14 let tmp = "567";

15 }

16 console.log(tmp); //ERROR tmp is not defined

Code Listing 2.2: Block scoped variables / the let keyword

Arrow Functions

Arrow functions are a shorthand syntax for anonymous functions.

11

Chapter 2. Technical Background

1 var isEven = function(num) {

2 return num % 2 == 0;

3 };

4 var isEven = num => num % 2 == 0;

5

6 var add = function(a, b) {

7 return a + b;

8 };

9 var add = (a, b) => a + b;

10

11 var log = function(val) {

12 val = "Hello, " + val;

13 console.log(val);

14 };

15 var log = val => {

16 val = "Hello, " + val;

17 console.log(val);

18 };

Code Listing 2.3: Arrow Functions

Additionally the this and arguments keywords are not redefined when using arrow
functions. Therefore there is no need for the var that = this; anti-pattern.

Function Parameters

Default values and the ability to collect multiple parameters into one variable have been
added.

12

2.6 ECMA Script 6

1 //old

2 function list(name) {

3 var entries = Array.prototype.slice.call(arguments, 1);

4 return "The List " + name + " has " +

5 entries.length + " entries";

6 }

7 //new

8 function list(name, ...entries) {

9 return "The List " + name + " has " +

10 entries.length + " entries";

11 }

12 list("Students", "Friedemann", "Moritz", "Torben");

13 //old

14 function say(text, name) {

15 if (name == undefined) name = "Unknown";

16 console.log(name + ": " + text);

17 }

18 //new

19 function say(text, name = "Unknown") {

20 console.log(name + ": " + text);

21 }

Code Listing 2.4: Parameters

Enhanced Object Properties

A shorthand syntax for function-properties and for keys with the same name as local
variables have been added.

13

Chapter 2. Technical Background

1 let first_name = "John";

2 let last_name = "Doe";

3 //old

4 var obj = {

5 first_name: first_name,

6 last_name: last_name

7 };

8 //new

9 var obj = {

10 first_name,

11 last_name

12 };

13 //old

14 var foo = {

15 bar: function() {

16 return 5;

17 }

18 };

19 //new

20 var foo = {

21 bar() {

22 return 5;

23 }

24 };

Code Listing 2.5: Enhanced Object Properties

Destructuring

With destructuring one can assign multiple local variables with values from an array or
an object.

14

2.6 ECMA Script 6

1 var test = [1, 2, 3];

2 var [a, b, c] = test; //a=1; b=2; c=3;

3 [a, b] = [b, a]; //swap values

4

5 var test = {

6 first_name: "John",

7 last_name: "Doe"

8 };

9 var {first_name, last_name} = test;

10 var {

11 first_name: fname,

12 last_name: lname

13 } = test; //lname="John"

Code Listing 2.6: Destructuring

Classes

A new class-like syntax for the prototype based programming has been added.

1 class test {

2 constructor(name) {

3 this._name = name;

4 }

5 getName() {

6 return this._name;

7 }

8 }

9 class test2 extends test {

10 constructor(name) {

11 super(name);

12 }

13 }

Code Listing 2.7: Classes & Inheritance

15

Chapter 2. Technical Background

Template String

This new way of defining strings enables variables to be added in place instead of being
concatenated.

1 var elements = [1, 2, 3, 4];

2

3 var text = "There are " + elements.length + " elements\n" +

4 "(" + elements.join(",") + ")";

5 var text = ‘There are ${elements.length} elements

6 (${elements.join(",")})‘;

Code Listing 2.8: Template String

16

2.7 Promises

2.7 Promises

In order to explain what a promise is and why it is needed, one has to look at the
traditional way of writing asynchronous programs in Node.js.

1 const fs = require("fs");

2 try {

3 fs.readFile("input.csv", (err, result) => {

4 if (err) {

5 throw err;

6 } else {

7 doCalculations(result, (err, result) => {

8 if (err) {

9 throw err;

10 } else {

11 fs.writeFile("output.csv", result,

12 function(err) {

13 if (err) {

14 throw err;

15 } else {

16 console.log("Done!");

17 }

18 });

19 }

20 });

21 }

22 });

23 } catch (e) {

24 console.error(e);

25 }

Code Listing 2.9: Example for nested callbacks

In this example a file is being read, some calculations are being made and the results
are being written back to disk. Because the three called functions are all working
asynchronous, we have to nest the calls in the previous callback function. This leads to

17

Chapter 2. Technical Background

code which soon becomes unreadable. Furthermore, if the order of the two calls should
be switched, a big part of the code has to be rearranged.

1 const fs = require("fs-promise"); //Promise version of fs

2 fs.readFile("input.csv")

3 .then(doCalculations)

4 .then((result) => fs.writeFile("output.csv", result))

5 .then(() => console.log("Done!"))

6 .catch(e => console.error(e));

Code Listing 2.10: The same example, with promises

Promises, as a language feature, were introduced in ECMASript 6. A Promise repre-
sents an operation that has not been completed yet and gives access to its return value
in a proxy-like way. Promises prevent the “habit” of nesting callbacks. This makes it
possible to write asynchronous code in a more synchronous fashion. A Promise is in one
of three states

pending The initial state, when the Promise is created.

fulfilled The operations has been performed successfully.

rejected The operation failed.

A pending Promise can either become fulfilled with a value (by calling the resolve
function) or rejected with a reason (by calling the reject function or by throwing an
error). After the Promise has switched to either state (which can only occur once per
Promise), the then method of it is called.

2.8 Microservices

“In computing, microservices are small, independent processes that communicate with
each other to form complex applications which utilize language-agnostic APIs.” (Fowler
2014)

Microservices are a modern interpretation of the term “Service Oriented Architec-
tures”. The goal is to wrap small parts of the program, which do one particular job,

18

2.8 Microservices

into a so called service. These services communicate with each other over a (network-)
protocol.

In a system which uses a Microservice architecture the following principles apply.

• The services can easily be replaced, even when the other services are still running.
This reduces the downtime of the application.

• The code, which is composited in a service should only be responsible for one
specific task.

• The system should easily be spread across multiple servers and provide the ability
to use different programming languages for the service implementation.

• The system is symmetrically structured. The communication between the services
are made through an event-like system.

(a) Monolithic (b) Microservice

Figure 2.5: Monolithic system vs. Microservices

Each color in the figures 2.5 represents a function of a software system. The first figure
shows a monolithic architecture. This term defines an architecture where the parts are
interwoven with each other. In case of a high load of the system, the whole application
is duplicated and run on another server. The microservice architecture, as shown in the
second figure, consists of small individual services which do not depend stongly on each
other. The single services can be moved or duplicated independently to another server
without the need to do the same with the other services.

19

Chapter 2. Technical Background

Current Implementation

Currently only one major implementation of the Microservice architecture seems to exist
in the NPM repository: The package Seneca10 is a project by Richard Rodger, which
was first released in 2010. Seneca and Moin differ in the following cases:

Seneca Moin

Event System

Executes the best-matching11handler. Has the ability to only execute the best-
matching7 handler or all handlers, which
match the event.

Transportation

Has 15 transportation modules. Has one transportation module which
works over socket.io.

Persistence

Has 13 different persistence modules. Currently only has the ability to read con-
figuration, but not to save data back in
any way.

Services

Services are written as independent pro-
grams. The configuration is done inside
the service. Changing the code needs a
manual restart of the program.

Services do not have to follow any pattern.
The configuration is done from within the
Moin-node, and the API of Moin is ex-
posed in a global Moin-object to the ser-
vice. A change of the code leads to an
automatic reload of the service.

Table 2.2: Comparison of Seneca and Moin

Due to the modularity of the Moin-system, it has the potential to be competing to
the Seneca project.

10
http://senecajs.org/

11The best-matching handler is the handler out of all matching handlers with the most filter properties

20

http://senecajs.org/

3 Architecture & Implementation

3.1 Application Structure

The Program is extendable in two ways:

Modules Modules are loaded at startup time. They add functionality, which are acces-
sible by other modules and services. They can not be reloaded while the program
is running.

Services Services are loaded after all modules are processed. They can dynamically be
loaded, unloaded and run in a sandbox-like environment

Modules

service_loader
fs_watcher

event_system
... m

oi
n
-A

P
I

Services

webserver
mail system

Figure 3.1: Modules, API and Services

3.1.1 Utilizing the package.json file

In order to tell the system that a folder holds a service or a module, the package.json
file is extended with a new property called “moin”.

To the time of this thesis it has 3 sub-properties:

21

Chapter 3. Architecture & Implementation

property description

moin.type Can either be “service” or “module”. If this property
is not present, the package is not recognized by the
system and will be ignored.

moin.moduleDependencies Only used for MoinModules. An array with the
MoinModule-names, which have to be loaded before
this module is loaded.

moin.settings An object which holds default values for the conpo-
nent’s configuration. If the key active is not defined
by the settings objects, it is set to the value true.

Table 3.1: Additional properties of the package.json file

The component folder also has to include an index.js file. This file is loaded by the
system.

3.1.2 Settings

The settings defined in a module’s moin.settings are collected in a file called config.json.
This file holds all configuration variables of the loaded modules. They are saved as an
object, where the keys are the names of the modules and the value their corresponding
settings from their package.json file.

For modules and components an active key is added. It defines if the component should
be loaded or not. Three objects are merged into another to form the final settings.

Active� object

{active : true}
Config � object

{level : info}
Default� settings

{level : debug}

Results

{active : true, level : info}

Figure 3.2: Merging of settings

22

3.2 Core

3.1.3 Moin command

The application can be run with the moin command. By default, it scans the node_module
folder for modules and services and loads them by default. The settings of every found
Moin-module are written to the config.json file.

3.1.4 Modules

A module has to export a function with one parameter and return nothing. The param-
eter contains the Moin API.

1 module.exports = function(moin, settings){

2 //Module code goes here

3 };

Code Listing 3.1: The minimal module code

3.1.5 Services

Contrary to the module a service does not need to export anything. The Moin-API
object is accessible as a global variable inside the service code.

1 console.log("Hello, World!");

Code Listing 3.2: The minimal service code

3.2 Core

The core of Moin currently consists only of about 450 lines of code. Most of the func-
tionality is added by modules, which makes the overall system very adaptable. The core
exposes the following API:

23

Chapter 3. Architecture & Implementation

Method: joinPath(String . . . segments)

parameters String . . . segments The path segments

return value String

description Concatenates the path the application was started in, with the given
path segments.

Method: load(String path)

parameters String path Path of the folder of the service/module

return value null / MoinComponent

description Returns a Promise which gets fullfilled either with an instance of a
MoinComponent or with null (in the case that the folder did not hold a valid
module or service)

Method: getLogger(String name)

parameters String name The name for the logger (is printed in the logs)

return value Logger

description Returns a new instance of the internal Logger. The logger has an
identical API like the console object (despite adding an additional method
called “info”) but adds a name, the current date and time and coloring to
the output.

Method: on(String event, Function function)

parameters String event The event-name to filter

Function function The handler function

return value nothing

description)see PromiseEventEmitter (subsection 3.2.1)

24

3.2 Core

Method: emit(String event, Any . . . arguments)

parameters String event The event to emit

Any . . . arguments Arguments which are passed to the handlers

return value Promise

description)see PromiseEventEmitter (subsection 3.2.1)

Method: registerMethod(String methodName, Function fnc, Bool after= true)

parameters String methodName The name of the method

Function fnc Handler of the method

Bool after = true If the variable is true, the handler is added at the end of
the chain (which is the default case). If it is false, the handler is added
at the start of the chain.

return value nothing

description)see API extension (subsection 3.2.2)

3.2.1 PromiseEventEmitter

The PromiseEventEmitter has a similar API as the original EventEmitter but works
asynchronous. Therefore, the emit function returns a promise which gets fulfilled as
soon as all handlers have handled the event. The listener function can either return
nothing or a Promise, if it works asynchronous. The listeners are chained, meaning
that each handler gets called, when its predecessor finished its execution. If all handlers
should be processed in parallel, the emitParallel function can be used. The this object
inside the handler is an instance of the Moin API.

3.2.2 API extension

The core of Moin has not much functionality by itself. Therefore modules can add
additional methods via the registerMethod function. The registered methods are called
as if they are part of the moin api-object. When a method is registered more than once

25

Chapter 3. Architecture & Implementation

by different modules, the calls are getting chained. The this object inside the method is
changed to the following object:

Method: getLastValue()

parameters none

return value Any

description Returns the last value a function has returned in the chain. If the
function is the first which is called, the value is undefined.

Method: setArguments(Any . . . arguments)

parameters Any . . . arguments The new Arguments

return value nothing

description Changes the Arguments for the following functions in the chain.

Method: stopPropagation()

parameters none

return value nothing

description Breaks the chain at this point. No further function is called.

Method: getAPI()

parameters none

return value nothing

description Returns the Moin API

This enables modules to override or decorate functionalities which were added by other
modules.

26

3.2 Core

1 let order1 = {

2 price: 80,

3 country: "DE"

4 };

5 let order2 = {

6 price: 30,

7 country: "DE"

8 };

9 let order3 = {

10 price: 30,

11 country: "NL"

12 };

13

14 //default method. 4 euro delivery cost

15 moin.registerMethod("getDeliveryCost", (package) => 4);

16 //add 6 euro for orders outside of germany

17 moin.registerMethod("getDeliveryCost", function(package) {

18 //get the previos delivery cost(4 euro)

19 let last = this.getLastValue();

20 if (package.country != "DE") last += 6;

21 return last;

22 });

23 //is added before the 2 already defined functions.

24 //Free shipping for price>80 euro

25 moin.registerMethod("getDeliveryCost", function(package) {

26 if (package.price > 80) {

27 this.stopPropagation();

28 return 0;

29 }

30 }, true);

Code Listing 3.3: Example of the API extension mechanism

27

Chapter 3. Architecture & Implementation

3.2.3 Events

The following events are emitted by the core.
Event: init)()

parameters none

description Is emitted when all modules are loaded.

Event: exit)()

parameters none

description Is emitted when the application has received a SIGINT signal.

3.2.4 Settings

key value

moin.modulePaths Array that contains folders, where the system should search
for MoinModules

logging.level Minimum level of log-messages to display. A level includes
every level which has a higher number:

0 | “debug” console.log or logger.debug

1 | “info” console.info or logger.info

2 | “warning” console.warning or logger.warning

3 | “error” console.error or logger.error

logging.disabled Array with logger-names which should not be printed.

Table 3.2: Settings of the Moin-core

28

3.3 Modules

3.3 Modules

3.3.1 Logo

This Module adds a startup CLI graphic to Moin.

Figure 3.3: The Moin startup graphic

3.3.2 Service Loader

The Service Loader adds the ability of loading and unloading services to the system. In
the process of loading the service, the code is wrapped inside a template code and saved
as a temporary file inside a .moin folder. This file is loaded instead of the original file.

1 /*
2 The following argumentlist is not complete.

3 It gets filled by the Moin-modules.

4 */

5 module.exports = function({__errorHandler,moin,setInterval}){

6 try {

7 //Service code goes here

8 } catch (e) {

9 __errorHandler(e);

10 }

11 };

Code Listing 3.4: The code which wraps the service code

29

Chapter 3. Architecture & Implementation

Problems

Timer
In order to unload a Javascript module every active timer-callback has to be unloaded
as well. Because it cannot be assumed, that the developer thinks of this circumstance,
it is important that the system tries to unload all registered timers by itself. In order
to do so, the setInterval, setImmediate and setTimeout functions as well as their clear
counterparts get overwritten by the module. Every timer ID is saved per service and
gets automatically cleared, when the service is unloaded.

Loading of Submodules
There are two ways services can be made available to the system:

They can be installed from the NPM repository. In this case, the dependencies de-
fined in the package.json file have to be accessible by the service.

They can be implemented and put into a dedicated folder. In this case, the Node-
modules which are installed at the root application should be accessible by the
services.

To achieve this, the location for the temporary file differs for the two cases.

1. When the service is inside a node_modules folder, the .moin folder is created as a
sub-folder of the services.

2. Otherwise the .moin folder is created inside the root of the node application.

Compilation- and other Errors
An error in a service should not lead to an error, which shuts down the whole system.
Therefore, the whole service code and every timer-callback is wrapped inside a try-catch-
block. With this method most errors are being caught.

30

3.3 Modules

API

Method: loadService(String|MoinService service)

parameters String|MoinService service A path to a service or a MoinService

return value Promise

description Prepares the temporary service file, decorates the service with an
API and interchanged globals, saves it to disk and loads it. The service API
is being build with an event, which can be listened to by other modules. The
returned Promise is resolved with an unique serviceID (String) or rejected
with an error message.

Method: getTemp(String subFolder)

parameters String subFolder Optional

return value String

description Returns the path to the temporary folder of the Moin-application.
The optional subFolder argument is concatenated if present.

Event: beforeServiceLoad)(MoinService service, Function cancel)

parameters MoinService service The service to be loaded.

Function cancel Used to cancel the loading process.

description Is emitted before the service is loaded. If the cancel method is called,
the service will not be loaded.

Event: loadService)(Object handler)

parameters Object handler See below.

description Is used to let modules decorate the API for a service. Globals and
API methods can be added via the handler object.

31

Chapter 3. Architecture & Implementation

Method: handler.getTemp(String subFolder)

parameters String subFolder Optional

return value String

description Returns the path to the temporary folder of the service. The optional
subFolder argument is concatenated if present.

Method: handler.getId()

parameters none

return value String

description Returns the unique id of the service.

Method: handler.getService()

parameters none

return value MoinService

description Returns the service itself.

Method: handler.registerGlobal(String name, Any data)

parameters String name Name of the global variable to overwrite.

Any data The data which should be linked to the global.

return value nothing

description Registers a new global variable for the service. With this method it
is possible to overwrite functions such as setInterval.

32

3.3 Modules

Method: handler.addApi(String name, Any data)

parameters String name Name of the global

Any data The data, which should be linked to the global.

return value nothing

description Registers a new api variable for the service. The added variables are
accessible via the moin global object (e.g.moin.<name>).

Method: handler.getApi()

parameters none

return value Object

description Returns the Moin-service-API.

Method: handler.registerErrorHandler(Function fnc)

parameters Function fnc The handler function

return value nothing

description Adds an error handler. The handler is being called (with the error
message as a parameter) when an error occurs in the service code.

33

Chapter 3. Architecture & Implementation

require file

save as temp file

resolve(id)

moin.loadService(service)

moin.load()

typeof service

emit loadService

createTempFolder

Mobule BModule A

wrap code into template

read service file

handler handler

string

MoinService

Figure 3.4: Loading of a service

34

3.3 Modules

Method: unloadService(String serviceId)

parameters String serviceId ID of the service, which should be unloaded.

return value Promise

description Unloads a service.

Event: unloadService)(String serviceId)

parameters String serviceId Id of the service, which should be unloaded.

description Is emitted when the unloadService method was called.

Method: unloadAllServices()

parameters none

return value Promise

description Unloads all loaded service.

moin.unloadService(serviceId)

delete service file

emit unloadService

Mobule BModule A

serviceId serviceId

Figure 3.5: Unloading of a service

35

Chapter 3. Architecture & Implementation

3.3.3 Event System

The event system in Moin differs by some aspects from the original Node EventEmitter:

Asynchronicity Contrary to the original EventEmitter, the emit call is non-blocking.
Instead it returns a Promise, which is resolved as soon as every handler has run.

Timeouts The emit method can take a timeout (in ms) as an optional parameter. After
the timeout is reached, the emit Promise is resolved with the results of the handlers
which have finished processing in time. It is important to note that reaching a
timeout does not terminate the handler function.

Return Values The emit call returns a Promise. The fulfillment-value contains stats on
how many handlers were interested in the event, how many returned a value, how
many threw an error and how many timed out. Additionally it holds two arrays
with the thrown errors and the returned values.

Filterable The Moin event system can not only filter events by a name. Instead filtering
by multiple properties as well as dynamic checks are supported.

Filter

The filter is a one dimensional Javascript object. The key defines the property which is
checked. The corresponding value has to match the one defined in the event. The value
is casted into a string for value comparison. If the value is a function, it is used as a
dynamic filter. Dynamic filter functions receive the value of the field as a parameter and
should return true, when their condition is fulfilled.

36

3.3 Modules

1 let event1 = {x: 1, y: 2};

2 let event2 = {x: 5, y: 6};

3

4 //matches event1

5 let test1 = {x: 1};

6 //matches event2

7 let test2 = {x: 5};

8 //matches event1 and event2

9 let test3 = {

10 x: (x) => x >= 1 && x <= 5

11 };

12 //matches nothing

13 let test4 = {x: 1, y: 6};

14 //matches event2

15 let test5 = {

16 y: (y) => y > 4

17 }

Code Listing 3.5: Example for filter rules and matches

Data Structure

Handlers are saved in a special structure to ensure fast retrieval of fitting handlers for
an event.

37

Chapter 3. Architecture & Implementation

1 let _fieldFilter = { //contains all filtered fields and handlers

2 "x":{//a field called x

3 //holds handler wich are filtered by this fields

4 _handler:["test1","test2","test3","test4"],

5 //static checks

6 _static:{

7 //test1 and test2 filter x = "1"

8 "1":["test1","test4"],

9 //test2 filters x = "5"

10 "5":["test2"]

11 },

12 //dynamic checks

13 _dynamic:{

14 //test 3 filters 1 x 5

15 "test3":(x) => x>=1 && x<=5

16 },

17 //count of dynamic checks

18 _dynamicCount:0

19 },

20 "y":{//a field called y

21 //holds handler wich are filtered by this fields

22 _handler:["test4","test5"],

23 //static checks

24 _static:{

25 //test4 filters y = "6"

26 "6":["test4"]

27 },

28 //dynamic checks

29 _dynamic:{

30 //test5 filters y > 4

31 "test5":(y)=>y > 4

32 },

33 //count of dynamic checks

34 _dynamicCount:1

35 }

36 };

Code Listing 3.6: Structure of event handlers

38

3.3 Modules

The main goal is to process the fields, which most handlers have set a filter rule on
first. The more handlers are registered for a field, the more can potentially be eliminated
as a candidate for the event.

Therefore, each field is given a score. It consists of the number of handlers and a
penalty for dynamic values, which take a longer time to calculate. The fields are then
sorted by their score in descending order. The field with the highest score is processed
first.

score = _handler.length � _dynamicCount ⇤ 0.5 (3.1)

Algorithm

The algorithm can either return a list of all handlers which match the event or the
best matching handler. The best matching handler matches the event and has the most
filter-rules defined. This adds the possibility to implement a handler which handles a
general case and implement all special cases as individual handlers, which are filtering
for their special case.

The two parameters for the function are: event which holds the event and bestMatch
which indicates if multiple handlers or just one handler and its score should be returned.
The following steps are performed:

1. Copy a list of all event handlers to handlers

2. If the bestMatch option is set, initialize a Map count with the handlers as keys
and 0 as value.

3. For every property a handler is filtering on

a) Initialize toCheck with every handler which is filtering the property and is in
the handlers list.

b) When toCheck is empty, go on with the next property

c) Remove every dynamic check, which returns true from toCheck

i. If the bestMatch option is set, increment the value of the passing dynamic
checks by one

d) Remove every value check, which equals the event value from toCheck

39

Chapter 3. Architecture & Implementation

i. If the bestMatch option is set, increment the value of the passing static
checks by one

e) toCheck holds all handlers, which do not meet the requirements.

f) Remove all handler from handlers, which are in toCheck

4. If the bestMatch option is set

a) If handlers has no entries return (id:=null, score:=-1)

b) Search the largest value from count

c) Return an object (id:=key, score:=value)

5. Else

a) Return handlers as an array

Example

1. The event {x:1, y:2} is being emitted

2. It is assumed that every handler is interested in the event. They are being copied
into handlers.

3. The field x is being checked. The handlers test1, test2, test3 and test4 are filtering
the x -field and have to be checked.

4. The dynamic filter test3 (x >= 1^x <= 5) matches and is removed from toCheck.

5. The static filter test1 and test4 (1) are matching and are being removed from
toCheck.

6. test2 ’s filter does not match the x -filter and is being removed from handlers.

7. The field y is being checked. The handlers test4 and test5 are filtering the y-field
and have to be checked.

8. No dynamic filter matches. toCheck is not modified.

9. No static filter matches. toCheck is not modified.

40

3.3 Modules

10. Both test4 and test5 do not match the y-filter and are being removed from han-
dlers.

11. The two handlers test1 and test3 are being returned.

Figure 3.6: Event filter algorithm

41

Chapter 3. Architecture & Implementation

Speed of Set Implementations

The bottleneck1 in the algorithm are the two lists toCheck and handlers. They have to
support inserts and deletes as well as checks, if a given value is present. To find the best
implementation of a Set a speed comparison between three solution was done.

1. A simple unsorted Array.

2. An Object where the values are being added as keys (with a value of true)

3. the new Set implementation, which was introduced by ECMAScript 6

For every implementation the following operations were measured:

1. Insertion of an unique element (add)

2. Deletion of an element (delete)

3. Searching for an element which is not part of the set (find(false))

4. Searching for an element which is part of the set (find(true))

find(true)

find(false)

delete

add
3.91

6.08

4.67

4.68

1.89

2.90

2.27

2.31

14.41

0.02

0.01

1.84

million operations / second

Set Object Array

Figure 3.7: Benchmark test with 10000 inserts, lookups and deletions

The Array is the fastest when it comes to adding of elements. In every other aspect
the Set solution surpasses the other methods.

1Bottleneck: component, which limits the performance of the whole system.

42

3.3 Modules

Collect & Execute

In the Moin system, the process of determining the fitting listeners and executing them is
named “Collect and Execute”. The collect function is the function defined in Section 3.3.3
wrapped in a promise. The execute function receives a handler id and should return null
if the system has no knowledge of the handler or, in the other case, the corresponding
callback function.

This enables a flexible way to extend the event handling, as other modules can add
their own event system. This is utilized by the Remote Event Dispatcher (Section 3.3.6)
which sends events over a network connection to other Moin instances.

Method: registerEventHandler(Fnc(event,bestMatch) collect, Fnc(id) exec)

parameters Fnc(event,bestMatch) collect Should return matching handlers (as
of Section 3.3.3) as a value or Promise.

Fnc(id) exec Should return a function, when the id is a valid handler or null
otherwise.

return value Integer

description Registers an additional event handler. Returns an id, which is used
to unregister the handler once it is not needed any more.

Method: removeEventHandler(Integer id)

parameters Integer id The id of the handler.

return value nothing

description Removes a previously defined event handler.

43

Chapter 3. Architecture & Implementation

Method: collectEventHandlerIds(Object event, bool bestMatch= false)

parameters Object event The event

bool bestMatch = false Return only the best match or all matching han-
dlers.

return value Array|Object

description Runs the internal collect functions (see Section 3.3.3) and returns

1. The concatenated handlers from each collect function
(bestMatch=false)

2. The handler with the highest score out of the returned candidates
(bestMatch=true)

Method: execEventHandlerById(String id, Object event)

parameters String id The id of the handler

Object event The event

return value Promise

description Executes a local event handler callback. Returns an object with a
state and either a value or an error. state is an enum-integer with the
following meaning:

-1 Timeout

0 Rejected (error is filled with the error-message)

1 Resolved (value is filled with the return value of the function)

Service API

For the added Service API functionality see Section 3.4.1.

44

3.3 Modules

3.3.4 Filesystem Watcher

To ease the process of writing an application, the dynamic loading and unloading of the
services should be automatically executed, when the script is changed. The Filesystem
Watcher module adds an API function, which monitors a folder for new or deleted sub-
folders. New folders (this includes every subfolder, which is in the monitored folder,
when the module is loaded) are tested, if they hold a valid MoinService. If this is the
case, the service is handed over to the Service Loader, which handles the initialization
of the service. Additionally the index.js and package.json files are being monitored for
changes. If a change in one of these two files is detected, the Service is reloaded. When
the service folder is removed from disk or renamed, the service is unloaded.

Chokidar

As of its own Readme2, chokidar is “A neat wrapper around node.js fs.watch / fs.watchFile
/ fsevents.”. The module provides a cross-platform, unified way of watching for filesys-
tem events. The documentation of the NPM-module can be found at https://www.

npmjs.com/package/chokidar

API

Method: addServiceFolder(String path)

parameters String path The path to be watched.

return value nothing

description Starts watching a folder for services.

Settings

key value

serviceFolders Array with folders, which should automatically be watched.

Table 3.3: Settings of the Filesystem Watcher
2
https://www.npmjs.com/package/chokidar

45

https://www.npmjs.com/package/chokidar
https://www.npmjs.com/package/chokidar
https://www.npmjs.com/package/chokidar

Chapter 3. Architecture & Implementation

3.3.5 Configuration

The Configuration module adds settings for services to Moin. The default settings are
defined in the same way as the settings for MoinModules (inside their package.json file
under the key moin.settings, see) Section 3.1.1). Opposite to the module settings, the
service settings are not collected in one file. A JSON file, with the name “<name>.json”
(where name is the name defined in the package.json file) is created inside a config folder
(“config.d” by default). In case of a change of the file’s contents, an event is emitted.
This allows the Filesystem Watcher to reload the module, if its settings were changed.
The module also checks for the active flag inside the settings object. When the value
is false the service will not be loaded.

Events

Event: serviceChanged)(String id)

parameters String id Id of the Service

description Is emitted, when a settings file was changed.

Settings

key value

configFolder Folder, where the settings for the services should be saved.

Table 3.4: Settings of the Configuration module

3.3.6 Remote Event Dispatcher

The Remote Event Dispatcher enables a connection between Moin instances. With this
connection, event handlers and emitters do not have to be on the same host.

46

3.3 Modules

Communication

The communication is done by Socket.io3 which is an event-driven client-server library
on top of the Websocket technology. The library,

• adds automatic reconnection.

• handles the transfer of javascript objects.

• adds an event system, where a response can be send back to the emitter.

In order to connect multiple Moin systems, there has to be one server and an arbitrary
number of clients, which all connect to the server.

Flowchart

Client CClient BClient A

Server

Figure 3.8: One server with 3 clients

In this scenario, 3 clients are connected to a server.

3
http://socket.io

47

http://socket.io

Chapter 3. Architecture & Implementation

Client CClient B

Client A

Event

Server D

_source:D_source:D

_source:A

Figure 3.9: Collect phase

Client A sends an event to the server. The server sends the event to B and C. The
source field is added to the event to indicate over which socket the event was send. This
ensures that an event is not send back to the socket it came from.

Client CClient B

Client A

[1, net:B:1, net:C:1, net:D:1]

Server D

[1][1]

[1, net:B:1, net:C:1]

Figure 3.10: Execute phase

48

3.3 Modules

In this case, every client and the server itself have a registered listener for the event
(in this case the local id of the handler is 1 to increase readability). This leads to
following id list: 1 (A’s handler), net:B:1, net:C:1, net:D:1. The ids which belong to
a remote instance are preceded by “net:<InstanceId>:<handlerId>”. A sends every
request beginning with “net:” to the server D. The id “net:D:1” is unwrapped, because
the id belongs to the server itself. The server then sends the unwrapped ids to B and
C.

Settings

key value

mode Can be one of the following:

client Connect to a server.

server Listen on a port.

dynamic Do nothing automatically.

host Only needed when mode=client. Domain or IP the server is listening
on.

port Port to connect to or to listen on.

id Id of the socket. Optional, if not set it is assigned to a new unique id
each run.

token A string, which is used for authentication. Has to be the same on all
instances.

Table 3.5: Settings of the Remote event Dispatcher

49

Chapter 3. Architecture & Implementation

3.4 Services

3.4.1 API

Service Loader

Method: moin.registerUnloadHandler(Function fnc)

parameters Function fnc Function which is executed.

return value nothing

description Registers a function which is called, when the service is unloaded.
This is the desired way of closing open IO handles.

The following globals are defined by the Module:

__servicename Holds the name of the service, which was defined in its package.json
file.

console Is overwritten by a MoinLogger instance. console.log is bound to the Log-
ger.debug function.

(set|clear)(Timeout|Immediate|Interval) The timer functions are wrapped inside a
try catch block and their ids are saved. Every active timer is automatically stopped,
when the service is unloaded.

Event Emitter

Method: moin.on(Object filter, Function (event) callback)

parameters Object filter The filter for the handler.

Function (event) callback Function, which is called when the event occurs.

return value nothing

description Listens for an event. The callback function can return a scalar value
or a promise.

50

3.4 Services

Method: moin.emit(String eventName, Object data, Integer timeout= null)

parameters String eventName Name of the event. Is saved inside the event-
data object under the “event”-key.

Object data Additional data for the event.

Integer timeout = null Timeout in ms, after which the results should be
returned, even when not every handler has finished its execution.

return value Promise ! {values, errors, stats}

description Emits an event. The return object consists of the following keys:

values Array with the return values of all resolved handlers.

error Array with the error messages of all rejected handlers.

stats.handler Total handlers which got executed by the event.

stats.rejected Number of rejected handlers.

stats.resolved Number of resolved handlers.

stats.timeout Number of handlers which timed out.

Method: moin.act(String eventName, Object data, Integer timeout= null)

parameters String eventName Name of the event. Is saved inside the event-
data object under the “event”-key.

Object data Additional data for the event.

Integer timeout = null Timeout in ms. When the timeout is reached before
the handler has finished its execution, a “Timeout” error is returned.

return value Promise ! {value} _ {error}

description Emits an event, but only executes the fitting handler, which has the
most filter-properties defined. The return object can either have one of the
two keys:

value The return value if the handler was resolved.

error The error messages if the handler was rejected.

51

Chapter 3. Architecture & Implementation

Config

Method: moin.getSettings()

parameters none

return value Object

description Returns the merged config for the service.

3.4.2 Example

This example consists of two services:

httpServer Creates an HTTP-server and sends out an event as soon as a request is
made. Listens on HTTP-events for the url /services which should return a list of
all services.

httpRoute Listens on HTTP-events and returns “Hello, World!” if the url /hello is
being requested. Also listens on the url /services.

1 {

2 "name": "httpRoute",

3 "moin": {

4 "type": "service"

5 }

6 }

Code Listing 3.7: package.json file of the httpRoute service

52

3.4 Services

1 moin.on({

2 event: "http",

3 url:"/hello"

4 }, (event)=> {

5 return "Hello, World!";

6 });

7 moin.on({event: "services"}, (event)=> __servicename);

Code Listing 3.8: index.js file of the httpRoute service

1 {

2 "name": "httpServer",

3 "moin": {

4 "type": "service",

5 "settings":{

6 "port":8080

7 }

8 }

9 }

Code Listing 3.9: package.json file of the httpServer service

53

Chapter 3. Architecture & Implementation

1 const http = require(’http’);

2 const PORT=moin.getSettings().port;

3 function handleRequest(request, response){

4 let event={

5 url:request.url,

6 method:request.method

7 };

8 moin.act("http",event).then(({error,value})=>{

9 if(error){

10 console.error(‘[${error.code}] URL: ${event.url} ‘+

11 ‘METHOD: ${event.method}‘);

12 response.writeHead(error.code);

13 response.end(error.message);

14 }else{

15 response.writeHead(200);

16 console.info(‘[200] URL: ${event.url} ‘+

17 ‘METHOD: ${event.method}‘);

18 response.end(value);

19 }

20 });

21 }

22 moin.on({

23 event: "http"

24 }, (event)=> {

25 throw {"code":404,message:"Not found"};

26 });

27 moin.on({event: "services"}, (event)=> __servicename);

28 moin.on({

29 event: "http",

30 url:"/services"

31 }, (event)=> {

32 console.log("collecting service names...")

33 return moin.emit("services")

34 .then(({values})=>values.join(", "));

35 });

36 var server = http.createServer(handleRequest);

37 server.listen(PORT, function(){

38 console.log("Server listening on: http://localhost:"+PORT);

39 });

40 moin.registerUnloadHandler(()=>server.close());

Code Listing 3.10: index.js file of the httpServer service

54

3.4 Services

httpServer/package.json:6 Defines the setting “port” with a default value of 8080.

httpServer/index.js:2 Reads the “port” setting.

httpServer/index.js:8 On an incoming request an http-event is emitted. Since moin.act
is used, only the best-matching handler is called.

httpServer/index.js:9-14 When an error has occurred, the error message is send to
the browser and an error is logged.

httpServer/index.js:14-19 When a value was returned, it is send to the browser and
an information message is logged.

httpServer/index.js:22-26 The default handler for the http-event. Throws a “Not
Found” error. Is only called when there is no handler which could serve the request.

httpServer/index.js:27 Returns its name on an service-event.

httpServer/index.js:28-35 Handles the http-event with the url “/services”. Emits a
services event and returns the joined list of values.

httpServer/index.js:36-39 Opens the http server.

httpServer/index.js:40 Registers an unload handler, which closes the http port, when
the service is unloaded.

httpRoute/index.js:1-6 Handles the http-event with the url “/hello”. Returns the
string “Hello, World!”.

httpRoute/index.js:7 Returns its name on an service-event.

To test this example, the Moin application was started and the urls /services (returned
“httpRoute, httpServer”), /hello (returned “Hello, World!”) and /test (returned “Not
Found”) have been requested.

55

Chapter 3. Architecture & Implementation

Figure 3.11: The example output of the application

56

4 Advertising & Publishing

4.1 Yeoman-Generator

To make the start for the programmer slightly easier a yeoman generator was build, to
help with configuring the Moin-application and creating new services.

The generator can be installed using npm install -g yo generator-moin.

Usage

The configuration is started with the command yo moin. An interactive wizard is shown,
which offers the following options:

• Should Moin look for services in other folders than node_modules? If yes it creates
the directory.

• Should Moin look for modules in other folders than node_modules? If yes it creates
the directory.

• Should Moin connect to or listen for other Moin instances? If yes, it asks for the
host and port.

After finishing, the generator creates the necessary folders and generates a config.json
file with the desired values.

To generate a new service the command yo moin:service can be used. A similar wizard
as in the configuration process is shown:

• In which service folder should the service be created?

• How should the service be called?

• Which kind of bootstrap-code is desired?

57

Chapter 4. Advertising & Publishing

Basic Example Just a console.log call and an unloadHandler

Event Example Some event calls as well as an unloadHandler

The generator creates a new subfolder in the desired location and puts an package.json
file and an index.js file into it. If the Moin application is running when the generator is
started, the newly created service is loaded automatically.

4.2 NPM

For every Module as well as for the core, a package was released in the NPM-repository.

Core https://npmjs.com/packages/moin

Service Loader https://npmjs.com/packages/moin-service-loader

Event System https://npmjs.com/packages/moin-event-system

Filesystem-Watcher https://npmjs.com/packages/moin-fs-watcher

Remote Event Dispatcher https://npmjs.com/packages/moin-remote-dispatcher

Configuration https://npmjs.com/packages/moin-service-settings

Every module which is documented in this thesis is a dependency of the moin-package.
This means that they are being installed, when the moin package is installed.

To install Moin the command “npm install -g moin” can be used (assuming that
Node.js is installed on the system).

4.3 GitHub & GitHub-Pages

The source code of Moin was released at http://github.com under the MIT license. As
a consequence of the number of packages and their repositories a GitHub organization
was created, which holds the repositories as well as the github.io website.

The sources can be accessed at https://github.com/moinjs.

58

https://npmjs.com/packages/moin
https://npmjs.com/packages/moin-service-loader
https://npmjs.com/packages/moin-event-system
https://npmjs.com/packages/moin-fs-watcher
https://npmjs.com/packages/moin-remote-dispatcher
https://npmjs.com/packages/moin-service-settings
http://github.com
https://github.com/moinjs

4.3 GitHub & GitHub-Pages

GitHub-Pages

In order to provide access to a documentation for the programmers, a website was created
at http://moinjs.github.io/. The used template was bought and is not part of this
work. The HTML template was rewritten, to work with Jekyll1, the template engine
used by GitHub.io.

(a) Landingpage

(b) Documentation

Figure 4.1: Screenshots of http://moinjs.github.io/ (mobile version)

1https://jekyllrb.com/

59

http://moinjs.github.io/
http://moinjs.github.io/

5 Conclusions

The aim of this thesis was to write an application which serves as a runtime environment
for Microservice systems, written in Javascript. A prototype has been developed, which
has all the features mentioned in the objectives section. It was then published to the
NPM repository and an API documentation was created in form of a website.

5.1 Problems

• The application works as expected, but was only tested with a few test cases. It
is to assume that when it is used in a production environment, bugs could occur.

• Since the application is not as “old” as its rivaling project Seneca and misses
Seneca’s number of additional modules, the success of the Moin project will be
uncertain.

• The whole architecture is build in a very modular fashion. This leads to a high
extendability but has the disadvantage to be hard to debug.

5.2 Planned Features

Event caching When an event is emitted in a regular interval, the list of handlers could
be cached to accelerate the event process.

Homepage & Documentation The online documentation was made at an early state
of development. It should be extended to fit the current API.

Module: Persistence The services can load config values, but do not have the ability
to save data. Therefore a module which offers an interface to a local database
could be created.

61

Chapter 5. Conclusions

Remote Dispatcher Multi-server-systems often use a messaging queue (e.g. RabbitMQ)
to distribute messages to each node. Adding another connection provider than
Socket.io would ease the integration into existing architectures.

Services Some services could be published to NPM:

1. A mail sending and receiving service.

2. A web server with an authentication component.

62

List of Tables

2.1 The most important properties of a package.json file 7
2.2 Comparison of Seneca and Moin . 20

3.1 Additional properties of the package.json file 22
3.2 Settings of the Moin-core . 28
3.3 Settings of the Filesystem Watcher . 45
3.4 Settings of the Configuration module . 46
3.5 Settings of the Remote event Dispatcher 49

63

List of Figures

2.1 The NPM Logo . 5
2.2 Number of NPM packages over time . 6
2.3 A simple event system . 8
2.4 Responses in event driven systems . 9
2.5 Monolithic system vs. Microservices . 19

3.1 Modules, API and Services . 21
3.2 Merging of settings . 22
3.3 The Moin startup graphic . 29
3.4 Loading of a service . 34
3.5 Unloading of a service . 35
3.6 Event filter algorithm . 41
3.7 Benchmark test with 10000 inserts, lookups and deletions 42
3.8 One server with 3 clients . 47
3.9 Collect phase . 48
3.10 Execute phase . 48
3.11 The example output of the application 56

4.1 Screenshots of http://moinjs.github.io/ (mobile version) 59

64

Code Listings

2.1 A simple example of the node event emitter 10
2.2 Block scoped variables / the let keyword 11
2.3 Arrow Functions . 12
2.4 Parameters . 13
2.5 Enhanced Object Properties . 14
2.6 Destructuring . 15
2.7 Classes & Inheritance . 15
2.8 Template String . 16
2.9 Example for nested callbacks . 17
2.10 The same example, with promises . 18

3.1 The minimal module code . 23
3.2 The minimal service code . 23
3.3 Example of the API extension mechanism 27
3.4 The code which wraps the service code 29
3.5 Example for filter rules and matches . 37
3.6 Structure of event handlers . 38
3.7 package.json file of the httpRoute service 52
3.8 index.js file of the httpRoute service . 53
3.9 package.json file of the httpServer service 53
3.10 index.js file of the httpServer service . 54

65

References

T. Berners-Lee L. Masinter, M. McCahill (1994). RFC1738: Uniform Resource Locators.
url: http://www.rfc-editor.org/rfc/rfc1738.txt.

Chandy, K. Mani (2006). Event-Driven Applications: Costs, Benefits and Design Ap-
proaches. url: http://docplayer.net/15630715-Event-driven-applications-
costs-benefits-and-design-approaches-gartner-application-integration-

and-web-services-summit-2006.html.
Fowler, Martin (2014). Microservices: a definition of this new architectural term. url:
http://martinfowler.com/articles/microservices.html.

66

	Introduction
	Motivation
	The Name ``Moin''
	Objective
	Structure of the Thesis

	Technical Background
	Node.js
	Yeoman Generator
	Node Package Manager (NPM)
	Event-Driven Architecture
	Hot Swapping
	ECMA Script 6
	Promises
	Microservices

	Architecture & Implementation
	Application Structure
	Utilizing the package.json file
	Settings
	Moin command
	Modules
	Services

	Core
	PromiseEventEmitter
	API extension
	Events
	Settings

	Modules
	Logo
	Service Loader
	Event System
	Filesystem Watcher
	Configuration
	Remote Event Dispatcher

	Services
	API
	Example

	Advertising & Publishing
	Yeoman-Generator
	NPM
	GitHub & GitHub-Pages

	Conclusions
	Problems
	Planned Features

	Appendix
	List of Tables
	List of Figures
	References
	Code Listings

